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2.

TECHNICAL REPORT SUZQIARY

In this contract, we set out to find practical methods of using the pulse
shape of observed seismic body waves to infer as much a 8 possible about the
motions which must have occurred at the seismic source itself. Previous
attempts on this problem had given insufficient attention to the constraints
which follow from requiring a physically plausible stress on the fault plane.
We believe we have made substantial progress towards the solution of this pro-
blem. Full details of what we have done are contained in papers already pub-
lished or now in preparation. It is likely that a total of six papers will
result from the support provided by this contract. They are as follows:

Ci) Detailed Spectral Analysis of 1~o Small New York Earthquakes, H
by J. Boatwri.ght, published in the Bulletin of the Seismological Society of
America, 68, 1117—1131, 1978. This work was described in full in a previous
semi—annual report. It gave a complete account of the inversion of amplitude
spectra of strong—motion accelerograms obtained at epicentral distances of only
about 1 kilometer , to obtain source dimensions and stress drops for two events
in the eastern U.S.

(ii) A Spectral Theory fo r Circular Seismic Sources; Simple E ’sti-
mates of Source Dimension, Effective Stress and Radiated Seis.nic Energy , by
3. Boatwright , submitted for publication in the Bulletin of the Seismological
Society of America. This work was described in full in a previous semi—annual
report. It described the pulse shapes to be expected for a fault rupture which
initiated at a point and subsequently grew as an expanding circle. A variety
of stopping mechanisms were discussed, and it was shown that a useful method
of data processing involved working with the square of the observed particle
velocity recorded at a given station.

(iii) Quasi-Dyno~nic Models of Simp le Earthquakes and the Imp li-
cations of Energy Flux Pulse Shapes as Modelling Constraints, by 3. Boatwrigbt ,
now in f inal stages of preparation for submission probably to the Bulletin of
the Seismological Society of America. A copy of this manuscript is included
in this report. A model of fault slip that is satisfactory during stages of
rupture, healing and stopping is discussed in terms of the far—field pulse
shapes it will generate. An application is given for two earthquakes which
occurred in Alaska. . Estimates are given of rupture velocity and stress re-
lease.

(iv) Investigations of 1b.~’o High Stress-Drop Earthquakes in the
Shwnagin Seismic Gap, Alaska, by L. House and 3. Boatwright. It is currently
Intended that this paper will be submitted for publication in the Journal of
Geophysical Research. A copy of the manuscript is given in this report . It
is inferred that the two earthquakes analysed had stress—drops in excess of
500 bars.

(v) Body Wave Analysis of the St. Elias Earthquake, section written
by 3. Boatwrigbt for inclusion (with contributions from other authors) in a
major paper on this large and recent event. From the far—field pulse shapes,
it was inferred that three separate sub—events could be distinguished within
this rupture. A copy of the manuscript in included in this report.

_ _  _ _  _ _ _  _ _ _ _ _



(vi) Elementary Solutions to Lamb ‘s Prob lem for a Point Source and
Their Relevance to the Study of Spontaneous Crack Propagation in Three Dimen-
sions, by Paul G. Richards, accepted for publication in the August 1979 issue
of the Bulletin of the Seismological Society of America. In order to determine
the slip occurring on a rupturing fault plane, the dynamic consideration of
effects of initial stress and varying fault strength can be handled if a
certain fundamental problem in elasticity theory is solved in a fashion that
admits rapid computation of the solution. This paper (a copy is included in
this report) gives such a solution, and discusses its signif icance in the
analysis of rupturing fault planes .

The four sections that follow are the expanded accounts of (iii) , (iv) ,
Cv) and (vi) above.
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QUASI-DYMANIC MODELS OF SI)~~LE EARTEQUAKES AND TRZ

I2IPLICATIONS OP ~~ERGY FLUX PULSE SEAPES

AS MODELLING CONSTRAINTS1

John Boatwright

Laznont-Doberty Geological Observatory and

Department of Geological Sciences

of Columbia University

Palisades, New York 10964

ABSTRACT

We have designed a coda by which one can compute the far—field

body wave displacement and energy flux pulse shapes from a series of

‘~quasi-dynamic” models of rupture. The integration over the (kine-

matic) slip velocity is calculated on a radial grid using the

Fraunbofer approximation . The specif ication of the slip velocity on

the grid i/derived from theoretical and finite difference solutions

for the mixed boundary value problem of a 3-D frictional rupture

model . The analytic form for the slip velocity is naturally divided

into two phases: the rupture growth, in which the slip distr ibution

is self—similar and elliptical, and the healing, dur ing which the slip

velocity, multiplied by a linearly decreasing factor , goes to zero .

The arr ival of a P-wave stopp ing phase, generated by the stopping events

which. determine the fault per imeter, determines the onset of the healing .

1 Lamont—Doberty Geological Observatory Contribution Number 0000 .
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The form of the healing factor, applied to the rupture front, produces

a realistic stopping of the rupture, enabling one to model directly

a wide range of high—frequency body wave spectra.

These quasi-dynamic models yield radiation efficiencies consistent

with the theoretical results of Koatrov (1974), so that the computed

energy flux pulse shapes and the time—integrated energy flux may be

used as constraints in the modelling of simple ruptures. In particular,

the distinct variation of the energy flux pulse shapes provides saismo—

logists with a useful model discriminan.t, with implications for the

determination of both rupture growth and stopping behavior for multiply

recorded earthquakes.

We have applied this waveform modeLling approach to the analysis

of two high stress drop earthquakes which occurred in the Shumagin

Islands, Alaska, on May 6, 1974. Wa analysed both short period WWSSN

data and strong motion accelerograph data obtained from an SMAJ. at

Sand Point. The energy flux modelling is shown to provide an estimate

of the rupture velocity and thereby establish closer bounds for the

estimates of stress release.

— 1
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3.

INTRODUCTION

The forward problem of modelling seismic sources by matching the

waveforms observed at a restricted set of stations is strongly non-

unique, as has been shown by a number of authors , notably Anderson and

Richards (1976) and Boore and Stierman (1976). These and other papers

have established the possibility of fitting the observed waveforms

equally well with different source models incorporating a wide range of

prescribed slip—functions. Analysis of the inverse problem of seismic

source theory (Kostrov , 1975) indicates that this non-uniqueness results

from the inherent nature of the seismic observations, in particular the

integral nature of the source representation, rather than from inade-

quate station coverage.

While the appropriate slip function cannot be resolved from seismic

observations, the final source models determined using different slip

functions can differ substantially, particularly in their est imates of

rupture velocity and source d imension. Since both the usual modelling

estimates of stress released in tectonic earthquakes (i.e., the dynamic

stress drop, r~ , and the static stress drop, Aa) depend strongly on

these parameters (Boatwx ight, 1979), the problem of choosing an appro-

priate slip function is of obvious seismological significance. It is

this choice which this paper seeks to restrict in a heuristic fashion,

through the use of dynamically consistent rupture models.

In order to determine a suitable source model, or class of source

models, it is necessary to consider both. a general fracture model and

an appropriate set of init ial conditions. Our fracture model. is

IL - 

.
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derived from a frictional theory of rupture, i.e., the rupture is

modelled as a growing region of stress relaxation, where the stress

acting on the (unhealed) rupture area is specified to be the dynamic

frictional stress. We presume the initial load ing stress to be approx-

imately constant or to decrease away from the rupture origin, and the

f inal rupture area to be simple and planar . These assumptions restrict

the application of our rupture model to small and moderate sized earth-

quakes, as large earthquakes may have strongly complex ruptures

(Kanamori and Stewart , 1977) .

To complete our model description , we need to assume a fracture

criterion and a suitable distribution of fracture strength , which will

then determine the motion of the crack tip. For simplicity, however,

the rupture velocity is assumed to be constant and subsonic. While

this behavior approximately corresponds to a particular fracture crit-

erion (i.e. , the strain weakening model of Andrews, 1976) , the resulting

source model adequately describes ruptures which grow with weakly

varying rupture velocities. The rupture velocities determined from

the modelling will then represent average rupture velocities.

Our source models are kinematic descriptions of the relative slip

velocity which solve, in an approximate fashion, the dynamic problem

outlined above. These “quasi-dynamic” models incorporate two basic

physical considerations. First , because of the abrupt stress release

of the frictional model, th. crack tip La the dominant source of radi-

ated energy. The dynamic solution of Kostrov (1964) for rupture growth

with. a constant rupture velocity gives the self-similar, “elliptical”

slip distribution, in which. the slip velocity is at a maximum as the

~ 

.~~~~ 
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crack tip passes and then slows asymptotically to a constant value.

Second , the healing of the rupture starts at the perimeter of the rup-

ture area as a result of the stopping of the crack tip, and the on set

of healing propagates into the inter ior at the compressional wave velo-

city. The healing La also assumed to be monotonic , i.e. , we do not

attempt to incorporate breakout phases which result from the Inter-

action of the rupture with a free surface (Burridge and Halliday, 1971) ,

and we presume that in the presence of a f inite dynamic frictional stress

the rupture will heal without reversal of slip.

These dynamic considerations for our kinematic models naturally

divide the slip at any point within the rupture area into two distinct

parts, which we will ref er to as the rupture growth and the healing .

It should be noted that this healing behavior is most directly incorpor-

ated into descriptions of the relative slip velocity, rather than the

relative dislocation . This is particularly opportune considering the

usual far—f ield source representation, where the pulse shapes are deter-

mined from the integral,

~2 (x,t) — If  ~(~ ,e_TC (x ,~ ))dr , (1)c _ — - —
over the faul t surfac e I of the relative slip velocity ~i~C~,t) using
the travel time, TC (x, ~) ,  between the source point and the receiver ,

to determine the correct delay.

— S-.- --. -- ___ _~~~~~---___ -. - * .  - - -
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6.

QUAS1-D~~AMIC NODEL

Kinematic Description

During the rupturm growth, the relative slip velocity at a point

~ from the hypocenter is given by

At/(t2_ I~ I 2/v2?~ t > ~~/v (2)

where v is the rupture velocity and A is a slip velocity which depends

on the dynamic stress drop , t5 , and the rupture velocity approximately

as A vt /j .i (Dablen, 1974) . Figure 1 shows the resulting slip velocity

as a function of time for a representative point on the fault. The

continuation of the elliptical slip distribution is shown as a dotted

line . Note that for a rupture which grows steadily, the slip velocity

at any point of the rupture area does not decrease below the velocity

A.

In order both to stop the rupture growth and to approx imate the

causal healing described in this introduction , we multip ly this slip

distribution by the function

- 
1

h(~,t) — (Th(
~
)_c)/

~~ 
T5W < t < T~ (~)

0

I 
.— — --~~~~ —.~~~~~~~ --~~~~~~~~~~~~~~ -“-~~~~~~ . -.--~~~~ - . - - .- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where T8(~) is the time of the onset of healing for the point F~, Th(
~
)

is the heal ing time (i.e., &i(
~,
Th(~

)1 — 0) , and ~ — Th(
~

) — T5(~) is

the healing interval , dur ing which the slip velocity decreases to zero .

For all the models used in this paper , the onset of healing ,

is given by

— T0 — — k—x0I/c~ (4)

where T0 is the time from the nucleation to the complete healing of the

rupture, ~ is the compressional wave velocity, and x0 (the position of

the last point to heal on the fault plane) is a vector which determines

the direction and relative extent of the asy etry of the f inal rupture

area. The healing function h(~ , t) thus describes a smoothed (by ~)

circular support func tion for the rupture which is imploding at the

compressional wave velocity. The interaction of this funct ion with. the

growing rupture produces a source with a finite rupture area which

heals into the interior of the fault as desired.

The f inal rupture area of these models is approx imately elliptical,

with eccentricity e < .4 , which may be varied by varying 
~ 

In Figure

2, snapshots of the relative slip velocity of a strongly asymmetrical

version of the model are shown. The slip velocity has been smoothed

so that is may be readily plotted. The regions where the rupture is

healing are shown darkened. Note boy this rupture is intermediate

between a circular rupture and a unilaterally propagating one.

. -~~~~~ ..-- ,,. --— - -- -5- ---.----— —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—— .------5- - - .---5— -~ .5 - -  -
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Healing

During the healing interval , the slip velocity at ~ is given by

— At(Th(
~
)
~ t) T5(U < t < T~ C~) .  (51

E(t2— 1 ~ I 2/,~2)
iI

For computational simplicity, the healing interval ~ La assumed to be

constant over the rupture. This description of healing does not in—

corporate any of the complex diffraction effects (i.e., inhoinogeneous

wave effects) which generally occur as a result of a deceleration of

the crack tip (Madariaga, 1977; Achenbach, 1978) . However , the causal

initiation of healing which propagates into the interior of the rupture

area at the compressional. wave velocity , is characteristic of both

In—plane and circularly symmetr ic numerical fracture models (Madariaga,

1976) .

The assumption that the P-wave stopping phase init iates the healing

is a natural result of the frictional model we are using . While the

fault is in motion, the shear stress acting across the rupture surface

is the dynamic frictional stress. The self-similar solution of Kostrov

(1964) implies that motion will continue until information (carried by

the P—wave stopping phase) concerning the finiteness of the fault

reaches it • The delay between the stopping event and the arrival of

the stopping phase produces an overshoot in the diatributiøn of slip

on most of the rupture area; that is, at the arr ival of the stopping

phase, the slip is generally greater then the static slip distribution

which would result from a stress drop equal to the dynamic stress drop .

L -—-5-— -5--- -— _•5-~
___

~& 5—-— -- - -5 5 - - -, —‘-‘.5 ~~S55- —~~ 
,__~~. . ~~~~~~ A



_____________________  —~~~~~~~ -. -- - - - - -5—— - 
-~~~~

9.

Because the shear stress renains at the dynamic frictional level during

healing, the slip cannot reverse direction. After the rupture has

healed , the shear stress across the fault surface re—adjusts so that

generally the static stress drop is greater than the dynamic stress

drop . In healing , the kinetic energy of the fault motions is mostly

dissipated in frictional heating, although some is radiated seismicly.

In stress release models where the dynamic frictional stress La zero,

the slip reverses slightly during healing , oscillating around the

static offset whose stress drop equals the dynamic stress drop . The

kinetic energy of the fault motion is radiated seismicly, damping the

oscillations ($urr idge, personal communication).

En Figure 3, sbapshots of the relative dislocation for the same

mode]. as Figure 2 are shown with the healing regions again darkened.

The rupture area to the left of the healing region is healed. In the

topmost graph, the slip is at the f inal, static offset . Note the slight

cusp to the right; this is exactly at and results from the uniform

healing behavior for the whole rupture area: in Madariaga ’s (1976)

results, the last point to heal decelerated more rapidly than the rest

of the fault.

Stopping Behavior

The. constant healing interval for the entire rupture, combined with

the constant rupture velocity, produces a perimeter region of width

(61
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~ across which the particle velocity at the crack tip decreases cont in-

uously to zero as described by eq. (5) , but where the beg inn ing of the

interval is given by I ~ I/v rather than. T5(~). This interaction pro—

duces a reasonable approzimation of a rupture which. stops gradually.

Since E La a free parameter , this allows us to model ruptures which

stop in an arbitrarily gradual or sudden fashion by varying A~, thereby

obta-fiting body wave spectra which show spectral falloffs w~~ with

2 c y c 3 and the general two corner frequency envelopes of the type

discussed by Boatwright (l978b) . The possibility of modelling this

range of stopp ing behaviors represents a signif icant advance in source

modelling. As a motivat ion for this k±nsmatic stopping behavior, note

that for this region the function h(~,t) can be written as

(Th(~)~t) 
(Th (

~
)_ I

~~I /v) 
- 

(Th(~
)_t) , (7) —

(Th(
~

)_ I
~ I /v)

where we may identify the first term as an appropriate decrease of A

resulting from a decrease in the dynamic stress drop . The second term,

contains the time dependence of the healing we

have used for the interior rupture area.

As shown in the series of snapshots in Figure 4 , detailing the

change of the slip velocity on this fault per imeter , the interaction of

the rupture growth and healing produces a realistically gradual stopping

at the. fault boundary. As a result, the slip distributions of these

models are generally more smooth than those of constant stress drop

models. This smoothness is evident in Figure 3, where the dislocation

at the healed edge of the rupture decreases gradually to zero .

-5 5 —-—~~~~~~ _ ‘~~~~ - _ - - ‘——~~~~~~~~~~~~~~ ‘—~~~~~~~~~~~~~~~~~~~~~~~~
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Using the technique of Andrews (1974) , we have calculated the

static stress drop for one of these models. The results are displayed

in Figure 5. The effect of the smoothed dislocation is to smooth the

str ess drop , weaken ing the stress concentration at the perimet er of the

fault. The peaked behavior of the stress drop at x0 is a result of our

healing specif ication, as ment ioned above. A variation of ~ over the

interior of the fault could be determined such. that the static stress

dr op was smooth at but this would have little ef f ect on the rad iated

pulse shapes.

ENERGY FLUX PULSE SUAPES

A signif icant feature of the “quasi-dy mic~.~ sour ce models is that

the seismic energy radiated is consistent with the theoretical results

of Kostrov (1974) and Hadariaga (1976) for general frictional models of

rup tur e, as described tn the Introduction . This agre sment allows us to

use both the energy flux pulse shapes and the time integrated energy

flux (the radiated energy per unit area) of the body wave arrivals as

modelling const raints . The energy flux across a surf ace at x , in a body

wave travelling with velocity c (x) , normally incident ‘to the surf ace,

is given by

~(x , t) p (z)c(x)~
2 (x, t) (8)

where pC~x) is the density and uC.x ,t) is the ground d isplacament (Bullen,

1965, p. 1271. Thus , if the phas. distortion of the free surface is

corrected for , ~~~~ ~~~~ ~j~~oz-~, of the square of the. ground velocity 

- - --— _ _ _  _ _ _ _ _
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represents the energy flux of the body wave arrival . These v2-plots

were first used by Ranks (1974) in an anal ysis of the Pacoima Darn re—

cording , and more . recentl y, by Boatvright (l978a) in an analysis of a

multiply recorded aftershock of the 1975 Oroville , California earth—

quake. Because of their non—linear signal ~nh~ncsment , v2—plots pro-

vide. generally coherent , noise—free pulse shapes, suppressing echoes and

1ow frequency contam inat ion .

The v2—plots can provide seismologists with particularl y useful

waveform constraints. In discussing v2 pulse shapes , we consider only

the undistorted (elastic whole—space) pulse shapes . As squaring the

ground velocity is a non—linear operati on, any phase distortion must be

corrected in the ground velocity bef ore squaring. The (undistorted)

far—f ield velocity pulse shapes from simple sources are made up of one

positive and one negative pulse with equal areas; t her efore the re-

sulting v2—plots show two distinct pulses separated by an actual zero .

We will ref er to the first pulse as the rupture phase , as it details

the growth of the rup ture and ref er to the second pulse as the healing

phase.

There are three distinct pulse measursments which may be obtained

from v2—plots . The first of these measursments, the width of the rup-

ture phase, provides an estimate of the pulse rise time (or the first

half—cycle of the velocity trac e, t½) and has been discussed in detail

by Boatwright (1979) . This rise time, affected by directivity , can

readily b. used to estimate the duration of the rupt ure growth. in the

direction of the station at which the puls. was observed. A second

measur~~ient , the separation of the healing— and rupture-phase peaks,

provides a pulse duration estimate giving information about the geometry

— -5  5.-—-- 
_  _
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of the rup ture if the azimu~’.ha1 distribution of the observed pulse

shapes is adequate. Finally, the relative amplitud e of the two phases

establishes a useful constraint on the fault motions, In general , this

relative energy content varies substantially over the focal sphere.

This is a direct result of the difference in the particle velocity

behavior behind the crack tip and during healing. The enhanced con-

structive interference of the ruptur e phase for body waves with phase

velocities on the fault surface which approac h the rupture velocity

dominates the v2-plots of shear wave pulse shapes rad iated along the

fault . In directions near the normal to the faul t plane the healing

phase increases in amplitude and tn these directions the r elative ampli-

tude of the phases is very sensitive to the rupture velocity and the

rupture geometry. For the two events discussed in the second part of

this paper , this particular featur e of the waveform, combined with an

approx imate description of the rupture geometry , is used to estimate

the rupture velocity and is therefore a cruc ial aspect of the anal ysis .

MODELLIBG OF TWO SEUM&GIN ISLANDS EARTHQUAKES

On April 6, 1974 , two moderate size (mb — 5.8 , 6.0) earthq uakes

occurred within a local network of short period seismograph stations

(run by Lamont-Doharty Geological Observatory) in the Shumagin Islands,

Alaska . They were followed by 69 recorded aftershocks over the next two

weeks. Both ma in shocks tri ggered a strong motion accelerograp h (SM&l)

at Sand ~ofnt , 50 ~n ~~~ of their epicenters, In Figure 6 , we shout a

map view’ of the epicentra l area.

L -
~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A thorough analysis of the sequence is presently in preparati on

(House and Boatwrigbt) which includes a full discussion of the after-

shock locations , the sequence b-i,alu e, the fault plane solut ion , the

far-h eld waveform analysis and the source modelling. We have included

only the far—field waveform analysis and the source modelling in this

paper , as an example of the app lication of the quasi-dynamic sources

for energy flux modelling.

SMAI1 Waveform Analysis

The SN&1. records from the 0153 and 0356 events were photographicall y

enlarged, digitized and instrument corrected using the technique dis-

cussed by Boatwright (1978b) . Since the Sand Point station was at an

SR node , the vertical and hor izontal components were. combined to obtain

the incident SV pulse shape , using the free. surface transformation,

u~~ (t) — cog 21 u~ (1t) + sin j  u Ct) , (9)
2coe j Z

Rare j (. 33°) is the angle of incidence of the S—wave , ux(t) is the

horizontal component (positive away from the source) and u5(T) is the

vertical component (posit ive downward) . This (real) transformation was

derived from Chapter 5 , pro bl en 5.6 , of Aki and Richards (1970) . Because

th. transformation is essentially a rota tion into the particle motion of

th. incident SV wave, it suppresses the. evanscent SP arrival expected at

this range (And erson, 19761 by a factor of 8.

j
_ _ _ _   .,. ... 
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The resulting SV acceleration traces for both. events are shown

in Figures 7 and 8, along with their respective velocity and v2 traces.

The integration to velocity was performed using a parabolic baseline

technique detailed in Perez et al . 0.979) . Both accelerograms show a

significant 12 Rz site response which is substantially reduced in the

integration to velocity.

me. v2—plots of the SV phases at Sand Point are renarkably sim-

ilar in shape and amplitude, although the 0153 pulse shape is noticably

more Impulsive. This similarity indicates that the events probabl y

share nearly the same rupture geometry, as they have the same focal

mechanism. The large relat ive amplitud e of the healing phase suggests

either that the rupture propagated towards the Sand Point station

(dovndip ) or that the rupture velocity was slow , about .6 of the shear

wave velocity , if the rup tur e was approx imately circular . These two

possibi lities are considered in the discussion of the WWSSN short period

data. The f inal model v2—plots are shown along with the data as dashed

lines.

In Figures 9 and 10, we show the displacenent spectra for the two

events , as well as the final model spectra (dashed lines) . The data

has been corrected for attenuation assuming a shear wave Q of 300 . The

sit e amplification at 10—15 liz shows up very stro ngly in these spectra .

The corner frequencies, marked by dots , were estimated assuming this

amplif ication to be spur ious. The corrected velocity spectra were

integrated to obtain the integral of the. squared ground velocity, which

we will call t~~ .

In order to estimate the source dimension, we have used three

diff erent meaaurenents of the SNA.1 pulse shapes and spectra ; i.e. , the 

-- - _ — — --5-.-~~~~~~~~~~~~~~~~~~~~~ -.-. . - -- 5- . --- . - , .,~~~ -_ .
~~~---—--. -
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corner frequency, the characteristic frequency and the pulse rise time.

The necessary spectral and pulse parameters are listed in Table 1.

Following Boatwr ight (1979) , the character istic frequency, n~, is

def ined as

t
~$ 0.01

\ 2 )
Sw

where u5~ is the. low frequency asymptote. This spectral measurenent

provides an estimate of the source dimension (radius a) through the

relation,

(111

where v is the rupture velocity and — 1.9 for this takeoff angle.

The pulse rise t ime, i~~, defined here to be the measurable width of the

first pulse of the v2—plot (the rupture phase) , may also be used to

estimate the source dimension , from the eapirical r elation (Boatwrigh t,

1979) ,

— ~~3—12~) a . (12)
16 v

Rare, ~ - v sin 8 is the ratio of the rupture velocity to be the phase

velocity of the ray along the. fault surface. The r esults from these three

source dimension estimates are shown in Table 2. If we. assume the ratio

-I.

.. .. ~~~~~~~~~~~ .~~~~~~~ .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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of the rupture velocity to the shear wave velocity to be bounded as

.55 < v < .8 , than we obtain the first order estimates of L.0 < a < 1.4

~n for the 0153 event and 1.4 < a < 2.0 ~~ for the 0356 event .

WWSSN Waveform Analysis

Before fitting for a part icular rupture model, it is necessary to

investigate the rupture geometry of the 0356 event • We have analysed

9 short—period P-wave arrivals from 6 WWSSN stations • The steps of thIs

analysis are shown In Figure 11, using the P -wave. recorded at GD~ as

an example. The lowest trace is the seismogram as dig it ized , and the

trace above it , the seismogram after filtering with a zero—phase band—

pass filter . This filter is made up from a triangle smoothing operator

and a second order Butterwortb. high pass filter (corner at .3 Ezl run

forwards and backwards on the trace. The third trace is the ground

velocity , obtained by a recursive deconvolution schame derived fr om a

bilinear approx imation (ICanasewich, 1975 , p. 194) to the coup led

galvanometer —aeismometer response . The uppermost trace is the square of

the ground velocity. It is the variation of these ~1
2—plota which we will

use to determine the rup ture geometry of the event.

In Figur e 12, we show how the pulse shapes vary over the focal

sphere. The P , pP , and sP takeoff directions are plotted relative to

the fault plane obtained by Rouse and Boatvright, so that the fault

plane is the. hor izontal plan e. of the stereonet • To account for the

pulse sf~ape dif f erences between the P and S body waves, the. phase leaving

as P-waves have been. corrected to the appropriate takeoff direction

1.. .-——- .‘—. __—_ _ ._ n.~
__ -~- na t tr±,rv~+.. r 
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(open circles) for S-waves having the same phase velocity along the

fault surface , which requires the far—f ield pulse shapes to be identi-

cal. From Kostrov (1970), this corrected takeoff angle is

0 — sin~~ (8 sin O~ ) 
. 

(13)

wher e 08 and 0 are measured from the normal to the fault plane. Note

that almost all the corrected takeoff angles lie between 20° and 30° .

The line across the ster eonet mar ks the strike of the Benioff zone .

In order to evaluate the variation of these v2- plots, in Figure 13

we show the synthetic variation of the v2—plots over our model range.

For these synthet ics, we have used both circular and slightly asymmet-

rical versions of the quasi-dynamic models, f ixing the ratio a
v

In the left—hand colum of Figure 13, we show the variation of

the v2 pulse shape for different rupture velocities where the takeoff

angle of the ray is at 30° from the normal to the fault plane. These

same synthetics may also be used to describe the variation of the v2

pulse shapes for different takeoff angles . For a circular rupture with

velocity v — .68, the upper and lower figures approximate the v2 pulse

shapes at 35° and 25° , resp ect ively, from the fault normal . The con-

trasting interpretations of these synthetic s results from the approxi-

mate. similarity of pulse shapes having similar values of x sin 0 , for
C

similar rupture models (Joatwright , 19791 .

In the. right-band column, we detail the pulse shape variat ions for

different directions of asymmetrical rupture growth relat ive to the

observer • In these synthetics, the. takeoff ang le is 30° from the. fault 

~~~~~~ . -- .5--- —~~~~~~ .--~~~~~~~~~~~~~~~~ - - - --.-~~~~~~--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _  5- —.5-—.

r 19.

normal and the rupture velocity is v — .68 . The asymmetrical models

have about an 10% unilateral rupture. If ~f (~) is the distance from

the hypocenter to the perimeter of the fault of the $ direction, the.

percent unilateral ruptur e is given as

100 • max 
~~~~ 

($ )— F~ (~+i~) . (14)

+

For an elliptical fault whose hypocenter is at one of the foci, the

percent unilateral rupture is simply 100 e, wher e e is the eccentri-

city.

In Figure 1.3, much of the more striking variations of the v2.-plots

appears to result from dif f erences in the crustal structure beneath the

stations used. The Sand Point v2 pulse shape has been plotted with the

same time scale , in order to show the relative attenuation present in

the short period WWSSN data . In particular , it is necessary to point

out the broadening (perhaps due to attenuation) of the HKC pulse shapes ,

with respect to the pulse shapes at nearl y the same takeoff direction.

Also the pulses at GDR and AM! appear to have a crustal reverberation

which is interfering destructively with the healing phase of the v2

pulse shape. This interference may be seen in the plot of the W~~~N

analysis in Figure 11 as well.

The slight dif f erence (in relative amplitude and tiningi of the

depth phase (updip) -pulse shapes relative to the. downdip pulse shapes

suggests that the rupture had a slight downdip component of unilateral

rupture (about 5%1 and a rupture velocity of about v — .6g. Because

-.  ,--~~~~~-—-~~~~~—5---.
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of the narrow band of the short period WWSSN instruments and the

unknown crustal structure beneath the stations whose P-wave.s were.

analysed, we can. use these results only qualitativel y. Rowever , it is

important to note that nearl y all of the v2—plots fall within the model

range spanned by Figure 13, f rom which we have determined the varianc e

of our source parameter est imate s. As we have already estImated the

ratio a for these events, specifying an approx imate rup ture velocity
V

and rupture geometry thus det ermines our f inal models.

Final Sour ce Models

For the f inal source modelling we have used synthetics generated

by two circu lar versions of the quasi-dynamic models. Since the die—

placament spectra f rom these events failoff faster then w 2 , we presume

that the rupture stopped graduall y rather than abruptl y ($adar iaga ,

1978) , and this gradual stopping is incorporated into the models .

Since both events were fit with circular models, the rupture

velocities of the two models are slightl y different : v — .68 for the

0133 event and v — .558 for the 0356 event; similar results would have

been obtained if we bad f ixed the rupture velocity and used asymmetric al

rupture geometries . Using a slightl y asymmetrical model and a rupture

velocity of .68 for the. 0356 event , lowers the. stress estimates by

20% .

The source parameters obtained from our model fit s axe listed in

Table 3. We have calculated the moment and radiated seiamic energy

using the formulae , 

,---- - .- -  . . A
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ R(x ,~0) 
. (15)

E5 — p (x)8(x) (R(x,ç,) 
~ 

2 (16)

e (el kF~ ce,$))

where p (~~ ) ,  p (x) — 3.4 , 2 , 5 ~~1/cm3 and 8(~~) ,  8 (x) — 4.4 , 2.5 ~~/sec

are the densities and shear wave velocities at the source and receiver ,

respectively, R(x ,~~ ) — 52 lan is the geometrical spreading factor ,

calculated following Newman (1973) and F~~ (8 ,$) — .46 is the radiation

pattern coefficient. e8C130°) ° .2 is the fractional energy flux , which

relates the time integrated energy flux at a particular takeoff angle

to the total radia ted seismic energy (iBoatwright , 1979) .

The dynamic stress drop also may be calculated directly from this

modelling. Since the quasi-dynamic models incorporate the self—similar

slip distr ibution described by Xostrov (1964) , Burridge and Willis (1969)

and others, the slip distr ibution is scaled by the initial relative slip

velocity, A. Thus , any model fit  may also be used to determine the

dynamic stress drop, via the f ormula ($oatwr ight , 1979) ,

4w p( C )½8(~~) S/2 p(x)½8(x)½ R( ~0 ,x)  / ii(x , t) 
~~ 

(17)

av2 t(0 ,4,) ~~ ~(x, t)

wher e i~1(x , t) is obtained by scaling the data , ii(x , t) to the

/ 
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synthetics, ~i(x,t). The model fits give /
u(x~t)

\ 
— .38 cm/sec and

.34 cm/sec for the 0153 and 0356 events , respectively.

The results compiled in. Table 3 show two systematic anomalies .

For both events, the dynamic stress drop Is greater than the average

static stress drop , while the apparent stress is substantiall y lover

than t~/4 , which Is the expected valu e for frict ional ruptures with

v .66 (Madariaga, 1976] . However, the gradual stopping of these

events may explain both anomalies. tf the rupture nucleated in a loc-

alized region. of high. stress, and grew beyond this region, the average

stress drop over the rup tur e area would be lower than the initial stress

drop , while the radiated energy would be low due to the gradual stopping

in the less loaded region. Note also the consistent differences in the

stress estimates for the two events, that the larger 0356 event has a

stress drop = 70% of the 0153 event.

CONCLUSiONS

The first goal of this modelling effort is the determination of

the rupture velocity of these two events. The estimate of rupture velo-

city is critical both for the model ling , because of the trade—off in. the

dir ectivity between rupture velocity and rupt ure geometry, and for the

estimates of stress release (An and t~~), because they depend strongl y on.

the estimate (or a priori asaumptioni of the rupture velocity.

To illustrate the second point, note tha t if the rupture velocities

were estimated to be .98, then both. the static and dynamic stress drop

estimates woul d be approx imat ely 30% of the values listed in Table. 3.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.
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This non—linear dependence obviously requires a strong estimate of the

rup ture velocity in order to obtain reliable estimates of stres s re-

lease.

In Figure 14, we have plotted the locati ons of 29 aftershocks of

the two events, proj ected onto the fault plane. Note the fit of the

estimated rupture perimeter of the 0153 event to Its aftershock cluster .

The aftershock cluster of the 0356 event is more diffuse , perhaps be-

cause of its lower stress drop . While these aftershock locations cannot

be used to confirm our estimates of the source dimension (owing to their

relative uncertainty and the small dimensions of the earthquakesl , they

indicate that the two events represent spatially distinct ruptures (see

also Figure 6). This interpretation is reinforced by the systemat ic

differences in stress released by the two events • Because of the

similarity of the fault plane solutions and the SMU waveforms, the

uncertainty of the ratio of any estimate of stress release is approxi-

mately 10%, and therefore these differences are signif icant.

These arguments lead naturally to the conclusion that the two

main shocks represent the failure of two distinct asperities , or stress

concentrations. Thus, the extremely high stress drops are not directly

indicative of a similarly high average stress over the region although

these events may be presumed to load the unruptured part of the fault

plane. The stress concentrations are inf erred to be the result of

patches of high strength. which have not yielded with. the rest of the

fault plane. Mdrews (J.a75) has called these stress concentrations

anti-dislocations, as the.y represent distr ibut ions of negative slip

relative to the rest of the fault system. The gradual stopping charac-

ter of both. events (inf erred from the falloff of their displacement

-—
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spectra and incorporated into the f inal source models) also supports

this interpretation , as this stopping behavior is to be expected of a

rupture which grows beyond the localized stress concentration where it

nucleated. This is equivalent to the “seismic gap ” stopp ing inechanisu

discussed by Husseini et a].. 0.976). Using their formula for fractur e

energy,

_ _ _  

0.81

2111,a

where a Is the fault radiu s, we obtain y ~ 3 x ].Ø~~ ergs/cin2 for the

two events. This extremely high fracture energy implies that the fault

zone for these events bad a similarly high fracture strength , and fur-

ther corroborat es the asperity interpretat ion.
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TABLE 1 — Spectral Parameter s

0153 0356

U$V .13 ± .04 cm/sec .25 ± .07 cm/ sec

2.2 ± .6 cm2/sec 3.1 ± .8 cm2/sec

1.2 Hz .8 Hz

5.1 Hz 3.5 Hz

.24 sec .37 sec
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TABLE 2 — Rupture Duration
‘ V

Method 0153 0356

corner frequency .41 ± .1. sec .62 ± .2 sec

characteristic frequency .37 ± .1 sec .53 ± .15 sec

rise time .39 ± .08 sec .60 ± .1 sec

average .39 ± .05 sec .59 ± .1 sec

1

— rn -~-
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I&BLE 3 — Source Parameters

0153 event

rad ius — a — 1.2 I~

moment — N
0 

— 3.5 ± .8 x 1o2~ dyne~cm

static stress drop — Am — 890 bars range 600—1100 bars

dynamic stress drop — Te 1040. ± 350 bars

radiated energy — B
9 8.7 ± 3 .0  x 1020 dyne—cm

apparent stress — — 160 ± 60 bars

0356 event

radius — a a 1.65 1~

moment — M
0 

a 6.7 ± 1.5 x l021 dyne—cm

static stress drop — 650 bars range~ 350—800 bars

dy~~a{~ stress drop — — 780 ±. 250 bars

radiated energy — B
5 

— 12.4 ± 4e0 * 1020 dyne-cm

apparent stress — Ta — 120 ± 50 bars

_ _ _ _  _ _  _ -
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FLGtTRE CAPTIONS

Figure 1: Generalized plot of the quasi—dynamic s u p  velocity .

Tr is the rupture arrival time , T9 the arrival time of

the f irst stopping phase and T
h the time of healing.

The slip velocity scales with the velocity A, which de-

pends on the rupture velocity and dynamic stress drop

approximately as A ; v

U

Figure 2: Snapshots of the slip velocity distribution of a quasi—

dynamic model, with tine increa sing from the bottom. The

slip is healing in the darkened regions. The slip velocity

has been smoothed (by dx) so that it may be easily plotted .

Note how the character of the rupture changes from a cir-

cular rupture to a unilateral propagation.

Figure 3: Snapshots of the slip distribution of the model shown in

Figure 2. The ship has healed to the left  of the darkened

reg ions. In the top figure , the static slip distribution

is shown; note the smoothed slip at the rupture perimeter ,

and the cusp at x0 .

~
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Figure 4: Snapshots of the slip velocity distribution at one edge

of the model , detailing the stopping behavior. The

healing regions have not been darkened • The stopping

phase can be seen as a discontinuity in slope at times

t .16 and t — .18. By t — .22 the perimenter has healed

completely .

Figure 5: Distribution of static stress drop and f inal slip f or one

of the models. Note how the smoothed distribution of

slip naturally weakens the stress concentration at the

per imeter of the rupture. The sharp stress node is an

unphysical ar tifact of the healing description .

Figure 6: Map of the Aleutian arc near the Shumagin Islands , showing

the epicentral area of the events to be discussed and the

stations used to locate the events and their aftershocks.

The inset shows the epicenters of the two events along

with the 29 located aftershocks. Note the clear grouping

of the aftershocks into two distinc t clusters.

Figure 7: SV acceleration , velocity and v2 pulse shapes for the 01.53

event . The dashed line in the v2—plot is the synthetic

pulse shape from the f inal model.

Figure 8: SV acceleration , velocity and v2 pulse shap e for the 0356

event. The dashed line in the v2—plot is the synthetic

pulse shape from the f inal model. 
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Figure :~~ Displacement amplitude spectrum for the 0153 event . The

dot marks the measured corner frequency . The spectrum

has been corrected for attenuation. The spectral ampli-

f ication at 10—15 Hz is a site response. The dashed

line is the synthetic spectrum.

Figure 10: Displacement amplitude spectrum for the 0356 event . See

expanation for Figure 9.

Figure U: Detail of short—period WWSSN analysis. The lowermost

trace is the seismogram as digitized with the bandpassed

seismogram above it. The next traces are the deconvolved

velocity and finally the v2—plot.

Figure 12: Variation of the short—period WWSSN V2 pulse shapes from

the 0356 event over the focal sphere. The takeoff angles

of the phases have been rotated so that the fault plane

is the plane of the stereonet . The phases which took

off as P—waves are corrected (solid lines) to the equi-

valent takeoff angles for S—waves. The two arcs are at

200 and 30° from the fault normal. The Sand Point ~~A.].

v2—plot is plotted at the same time scale for ref erence.

Figure 1.3: The variation of the v2 pulse shapes over the mode], range.

The left—hand column shows the variation of the pulse

shapes with the variation of ruptur e velocity or takeoff

angle (sea text~ , whi.le. the right-baud column. shows the

variation resulting from a slightly asymmnet r ical rupttre

geometry .
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Figure 14: Plot of the aftershock locations projected onto the

fault plane. The dashed circles are the rupture areas

determined from the waveform modelling . The uppermost

(smaller ) event is the 01.53 main shock , while the larger

event is the 0356 main shock. The largest intervening

aftershock (mi, — 4.7) occurred at 0227 and is just to the

left of the 0153 rupture zone.
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MODEL VARIATION OF SHEAR WAVE V2 PULSE SHAPES = 300)

CIRCULAR MODELS ASY14IETRICAL MODELS

(v — .68)

v .78 rupture away from observer

v .68 rupture normal to observer

~AA ____
v .5~ rupture towards observer
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INVESTIGATION OF TWO HIGH STRESS-DROP EARTHQUAKES

IN THE SHUMAGI N SEISMI C GAP , ALASKA 1

Leigh House and John Boatwrigh t

Lainon.t-Vohe..tty Ge.otog..Lca2 Oboeitvatoty and
Pepa ’r.tinent o~ GeofogJ.~ca2 Sc.~ence.6 o~ Cotwnbi.~a Un~ue~oJ.~ij

PaU6adt~, New Yo’th 10964

AESTRACT

Two moderate size (m.~ 
— 5.8, 6.0) earth quakes occurred within a local net-

work of short—period seismograph stations in the Shumagin Islands , Alaska , on

April 6, 1974. They were followed by 69 aftershocks recorded over the next two

weeks. Both inainshocks triggered a strong—motion accelerograph (SMA) at Sand

Point, 50 Ian NNW of their epicenters.

High quality locations obtained from local network arrivals for the main—

shocks and 29 aftershocks plot at depths between 35 km and 45 lan and define a

plane dipping about 30° to the NW . A nearl y pure—thrust focal mechanism for

the larger (mb — 6.0) earthquake was obtained from long—period data. The fault

plane dips 30° in the direction N 16°W . This sequence was located along the

dipping seismic zone beneath the eastern Aleutians and was presumably related

to underthrusting of the Pacific plate beneath fforth America.

We obtained estimates of the source parameters of these earthquakes from

analysis of SMA data and WWSSN short period data. WWSSN data indicates that

the earthquakes ruptured a nearly circular zone . Modelling of the SM& records

with a quasi— dynamic model j Boatwright , 1979) provides the following source

parameter estimates for the — 5.8 and 6.0 earthquakes respectively: moments,

Mo, 3.6 and 6.6, x lO2~ dyne—cm and stress drops : 650 and 540 bars. A high

1Laisont—Doherty Geological Observatory Contribution Number 0000.
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frequency spectral fall—off of w 3 suggests that the ruptures stopped gradually.

The Shumagin Islands region is believed to have a high potential for a

future large earthquake [Ke ].leher , 1970; Sykes, 1971; Kelleher et al., 1973].

The location of this earthquake sequence at the deepest part of the rupture

zone of the 1938 earthquake (Ms 8.7) (major earthquake ruptures of ten ini-

tiate at depth and propagate updip) and the high stress—drops of the shocks in

1974 may indicate considerable accumulation of stress prior to a major earth-

quake in the Shumagin Islands region.

INTRODUCTION

Two moderate size (m.
b 

5.8 , 6.0) earthquakes and their aftershocks , which

occurred within the Shumagin Islands Seismic Network , Alaska , have produced a

unique data set for a detailed study of the tectonics at depth in an area which

has been identified as a seismic gap. In order to fully describe this earth-

quake sequence , this study integrates the locations and magnitudes from the

seismic netwo rk , the strong motion accelerograph recordings of both events , and

short—period WWSSN data from the larger event.

The April, 1974 sequence began at 0153 hours on April 6, 1974 , with a mod-

erate size (mb 
— 5.8) mainshock. This was immediately followed by aftershocks,

including one of magnitude 4.3 at 0227 hours. A second, and larger (m.
D 

— 6.0) ,

mainshock occurred at 0356 hours. Over-the next two weeks there were nearly 70

aftershocks, three of which had body wave magnitudes greater than 6. Considering

only the teleseismic locations , the sequence resembles a swarm as the mainshocks

are so close in both location and magnitude. Using the local network locations ,

however, it is clear that there were two distinct mainshocks which had separate

rupture areas. The range of hypocentral depths for these events is between 37

and 43 km.

_ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~
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The Lamont—Doherty Geological Observatory has operated a network of vertical

short—period , radio—tele metered stations in the Shumagin Islands region of Alaska

since July 1973. As originally installed , the network consisted of high—remote

stations which telemetered their data to a central recording site at Sand Point

(SDP, see Figure 1). Severe environmental factors resulted in numerous station

outages over the winter season. By April, 1974 , when the sequence occurred , only

four of the remote stations were operating.

Both mainshocks triggered a strong motion accelerograph (SM&—l) located at

Sand Point. These recordings , complemented by a qualitative analysis of the

rupture geometry using WWSSN short—period data , are modelled using the techniques

and models discussed by Boatwright (1979), which focus on the determination of

the rupture velocity , and which provide more reliable estimates of stress re-

lease.

.Ar chambeau £1978) made a survey of earthquakes along the Aleutian arc using

1% to Ms ratios and obtained high stress drops for these two mainshocks (M :

500 bars). Our study confirms his identification of these events as high—stress

drop ear thquakes , and in addition , provides considerable insight into the charac-

ter of the deformation at this depth in the Benioff zone.

Analysis of Shumagin Network Data

During the two weeks following the mainshocks of April 6 , 1974 , more than

70 aftershocks occurred which were large enough to be recorded by the station at

Squaw Harbor (SQU, see Figure 1). Of these, 4 were large enough (rn.0 > 4.0) to

be recorded teleseismically . Seismic stations which were operating at the time

of these earthquakes were: SDP, PVV, SQH, SGB , and CIB (see Figure 1). CNB was

working only internittantly and recorded only about 1/2 of the sequence . Unf or—

tunately , the station nearest the sequence , Nd , did not record any of the sequence.

_ _  
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Our earthquake location procedure consisted of reading arrival times from

magnetic tape playbacks (with a precision of 0.2s) and using a variation of the

HYPO 71 program fLee and Lahr , 1972] to obtain hypocentral coordinates from the

arrival times. We had no difficulty making P arrival time picks, as the P

phase was generally quite impulsive. Since only vertical seismoineters are in-

stalled at the remote stations , making reliable picks for S arrivals was quite

difficult. In general, we used only S arrival times from the SDP station,

which has 2 horizontal short period seismometers , itt addition to a vertical.

In order to reduce the magnitude of the overall station residuals, we

applied station corrections to arrival times. We averaged the station resi-

duals from the two main shocks and the first large aftershock (April 6, 0227

hrs, mb 
— 4.3), and applied the corrections to arrivals from the whole suite

of events. The largest residual , —O .ls, was at station SQR ; the rest were

± 0.05s or less.

By obtaining earthquake locations both with and without arrival times from

CNB , we dete rmine d that , although there is no significant bias of locations

which don’t use CNB arrival times as compared with those which do, there is an

increase in scatter of the locations which don ’t use CNB arrival times recorded

at CNB. This restriction reduced the number of aftershocks we located to 27.

We feel that these locations are the most reliable of those from the whole se-

quence and estimate hypocentral. location errors to be less than 5 lan in an

absolute sense, and in a relative sense , less than 2 km for our “A” quality

solutions.

Locations of the April 6 , 1974 mainshocks and well located aftershocks are

plotted in map view in Figure 1. Two open circles within the box are network

locations of the two mainshocks. The PDE (teleseismic) location for these events

is plotted as the open circle about 20 km to the NNW of their network locations. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Network locations for the whole sequence are plotted in the inset. Main shock

locations are circled; the first , at 0153 hours on April 6, is trenchward of

the second , which occurred two hours later , at 0356. Note the separation of

aftershocks into two adjacent , but distinct groups.

The location of the cross section in Figure 2 is indicated in Figure 1

by the line which terminates just SE of the Aleutian Trench. The cross section

extends slightly beyond the northern edge of Figure 1.

Four years of Shumagin Seismic Network data are plotted in cross section

views in Figure 2. This figure illustrates the well—defined 10 km thin Benioff

zone which exists within the central portion of the network. The April 6 se-

quence occurred within the area of the box, at a depth of 40 km. Davies and

House [19793 noted that if the seismicity below about 40 km occurs near the

upper surface of the descending slab, then there must be a bend in the slab at

about 40 km. This is necessary because the seismic zone below 40 km dips at

about 30°, whereas, between the trench and 40 km depth, the slab dip is about

150 . Thus, the April 6 sequence occurred very near this bend in the slab.

The inset in Figure 2 is an enlarged cross section of the area of the April 6,

1974 sequence. The first main shock, at 0153 hours, is shallower , and trench—

ward of, the 2nd main shock. Dashed lines represent the rupture dimensions as

estimated from the source modelling. The rupture zones are plotted with a dip

of 30° , which is the clip of the fault planes we infer for these events. Sym-

bol size is scaled to magnitude , the largest event is the second mainshock (rn.0

6.0), the smallest event plotted has a magnitude of about 1.5. Symbol filling

indicates quality of the location. Filled symbols are used for the best quality

locations (“A” quality), 1/2 filled for the next best (“B” quality) and open

symbols for worst quality (“C”). Relative hypocentral errors are about 1.5 km 

- -. .  ----- --- --— .
~~~~ -~~~-—-—
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for the “A” quality locations , 2 km for “B” quality and 3.5 km for “C” quality.

Errors in “A” quality locations are about the same magnitude as the rupture

radius of the first mainshock (1.3 1cm), those for “B” quality about the same

magnitude as the rupture radius of the second mainshock (1.8 kin).

Figure 3 is an inclined cross section view of the April, 1974 sequence.

The projection plane is oriented parallel to the fault planes of the mainshocks,

and the “view” of this figure is upwards at the fault plane. In this figure

the first main shock (0153 hours) is above the second (0356 hours). The dashed

circles represent the rupture areas of the two inainshocks as inferred from the

SI4A data. Symbol size and filling represent magnitude and quality of the

solutions as in the previous figure. Note that the aftershocks cluster about

the two main shocks , and , in general, are indicative of two distinct rupture

areas. There is, however, some scatter , which is probably partly the result

of location errors, but which may also suggest that deformation during this

sequence extended beyond the immediate rupture zones of the inainshocks. The

first large aftershock (a.0 — 4.3) occurred at 0227 hours , on April 6 (just

1/2 hour after the first mainshock). It is plotted as the large , filled sym-

bol to the left of , and slightly below the first mainshock, as shown in Figure 3.

The second large aftershock (rn.0 — 4.1) occurred at 0509 hours on April 6, and

plots as the solid square to the left of , and slightly below, the 2nd mainshock.

Thus, the locations of these larger aftershocks also suggests that deformation

during the sequence extended beyond the i ediate mainshock rupture areas. The

scatter in aftershocks plotted in the inset of Figure 2 is consistent with this

concept .

local Mechanism of the Main Shocks

We obtained the focal mechanism of the second mainshock (a.0 • 6.0), shown
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in Figure 4, primarily from long period arrivals at WWSSN stations. Both S wave

polarizations and P wave first motions were used . There is only one inconsis—

tancy in the first motions , and that is a less reliable pick. This mechanism

is consistent with the local network short period first motions , which are the

square symbols in Figure 4.

Since error in determination of the mechanism would produce error in the

source parameter estimates (see below), we wanted to extract the maximum constraint

possible from the data and quantify error in the focal mechanism. We selected

S wave polarizations from 9 stations which had clear S arrivals, and used the

S arrival from the SDP SMA , as well, and obtained a mechanism which produced a

minimum S wave polarization residual. We also used this information to obtain 1— .

standard deviation error estimates. Vocal parameters and error limits are: strike ,

2540 ± 15°, dip 30° ± 5°, rake (of slip vector) 90° + 15° . These errors are indi-

cated on Figure 4, as are the associated errors in the T and P axes. First motion

and S wave polarization data are fewer, but identical., for the first mainshock

(rn.0 — 5.8).

Since the network Located seismic zone , and the general distribution of after-

shocks (see Figure 2) are very nearly parallel to the NE—SW striking, 30° dipping

nodal plane , we prefer this to be the fault plane of these events. The SM& wave

forms at SDP are also consistent with this choice of fault plane. Thus, these

earthquakes were shallow—angle underthrusts of Pacific lithosphere beneath North

America. Shallow angle underthrusting, with mechanisms similar to this one has

been observed along the Aleutians, by investigators such as Stauder [1968] and

Bollinger and Stauder L1966]. Since their fault planes are parallel to the

Benioff zone, as shown by the network locations, below 40 lan, it appears that

the Pacific plate has already made the bend to a steeper dipping geometry by the

time it has reached the 40 km depth of these earthquakes .

_ _ _ _  
-... ...~~~~~~~~~~~~ .
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Silk-i Waveform Analysis

The Silk-i records from the 0153 and 0356 events were photographically en—

larged , digitized and instrument corrected using the techniques discussed in

Boatwright (1978). Since the Sand Point station was at an SR mode , the ver-

tical and horizontal components were combined to obtain the incident SV pulse

shape , using the free surface transformation ,

U (t) — ~~~~ u~(t) + sin j u (t). (1)

Here j is the angle of incidence of the s—wave, u (t) is the horizontal compo-

nent (positive away from the source) and-u Ct) is the vertical component (posi-

tive downward). This (real) transformation was derived from Chapter 5, problem

5.6, of Aid and Ri chards (1979). The resulting SV acceleration traces for both

events are shown in Figures 6 and 7, along with their reàpective velocity and

v2 traces. The integration to velocity was performed using a para bolic base-

line technique detailed in Perez, Husid and Espinosa (1979). Both accelerograms

show a significant 12 hz site response which is substantially reduced in the

integration to velocity .

The v2—p lots detail the energy flux of the body wave arrival. Their non-

linear signal enhancement make them a strong tool for seismic source studies.

The v2—plots of the sv phases at Sand Point are remarkably similar in shape

and amplitude , although the 0153 pulse shape is noticably more impulsive. This

similarity indicates that the events probably share nearly the same rupture

geometry as they have same focal mechanism. The large relative amplitude of

the healing phase suggests either that the rupture propagated towards the Sand

Point station (downdip) or that the rupture velocity was slow , about .6 of the

shear wave velocity, if the rupture was approximately circular (see Boatwright ,

1979). These two possibilities are considered in the discussion of the WWNSS 

~~--~~—~~~~ ~~~~ 
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short period data. The final model v2—plots are shown along with the data as

dashed lines.

In Figures 8 and 9, we show the displacement spectra for the two events ,

as well as the final model spectra (dashed lines). The data has been correc-

ted for attenuation assuming a shear wave Q of 300. The site amplification

at 10—15 hz shows up very strongly in these spectra. The corner frequencies ,

marked by dots, were estimated assuming this amplification to be spurious .

The corrected velocity spectra were integrated to obtain the integral of the

squared ground velocity (say

The spectral and pulse shape parameters for the two events necessary for

the estimation of the rupture dimensions are compiled in Table 1. Following

Boatwright~ (1978a), the characteristic frequency , ,~ is def ined as

(.

~
4)1

3 (2)

where is the low frequency asymptote. This spectral measurement provides

an estimate of the source dimension (radius — a) through the relation,

k~~~ — (
~
)
~

where v is the rupture velocity and 
~ 

— 69 for this takeoff angle. The rise

time , r~ , to be the measur able width of the first pulse of the v2—p lot

(the rupture phase), may also be used to estimate the source dimension, from the

empirical relation (Boatwright, 1979) ,

— 
.(l3—l2o) f ~, 4)16 ( v

Here • — sin 0 is the ratio of the rupture velocity to the phase velocity of

the ray along the fault surface. The results from these three source dimension

estimates are shown in Table 2. If we assume the ratio of the rupture velocity,

______ . .  ______ ~~~~~ 
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to the shear velocity to be bounded as .55 < .8, then we obtain the first

order estimates of 1.0 < a < 1.4 kin for the 0153 event and 1.4 < a < 2.0 for

the 0356 event .

WWNSS Waveform Analysis

Before fitting for a particular rupture model , it is necessary to inves-

tigate the rupture geometry of the 0356 event. We have analyzed 9 short period

P—wave arrivals from 6 WWNSS stations . The steps of this analysis are shown

in Figure v, using the P—wave recorded at GDH as an example. The lowest trace

is the seismogram as digitized , and the trace above it , the seismogram after

filtering with a zero—phase bandpass filter. This filter is made up from a tri-

angle smoothing operator and a second order Butterworth high pass filter (corner

at .3 hz) run forwards and backwards on the trace. The third trace is the

ground velocity, obtained by a recursive deconvolution scheme derived from a

bilinear approximation to the coupled galvanometer—seismometer response. The

uppermost trace is the square of the ground velocity. It is these v2—plots

which we will use to constrain the rupture geometry of the event.

In Figure U we show the variation of the v2—plots over the focal sphere.

The P , pP and sP takeoff angles are shown relative to the fault plane, rotated

into the plAne of the .figure , together with their respective v2pulse shapes.

To account for the pulse shape differences between the P and S body waves , the

phases leaving as P—waves have been corrected to the appropriate take—off angle

(open circles) for an S—wave having the same phase velocity along the fault

surf ace, which requires the far—field pulse shapes to be identical. From

Kostrov (1970), this corrected take—off angle is

— 5~~_1(L 
~~~~~ (5)

where 0~ and are measured from the normal to the fault plane. Note that

_ _ _
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almost all the corrected takeoff angles lie between 20° and 30°. The line across

the stereonet marks the strike of the Benioff zone .

In order to evaluate the variation of these v2—p lots , in Figure 12 we show

the synthetic variations of the v2—plots over our model range . For these syn-

thetics, we have used both circular and slightly asymmetrical versions of the

quasi—dynamic models discussed in Boatvright (1979), fixing the ratio

In the left—hand column of Figure 12, we show the variation of the v2 pulse

shape for different rupture velocities where the takeoff angle of the ray is

at 300 from the normal to the fault plane . These same synthetics may also be

used to describe the variation of the v2 pulse shapes for different takeoff

angles. For a circular rupture with rupture velocity v — .6 B ’ the upper and

lower figures approximate the V
2 pulse shapes at 37° and 24°, respectively ,

from the fault normal. The contrasting interpretations of these synthetics re—

suit from the approximate similarity of pulse shapes having similar values of

sin 0, for similar rupture models.

In the right hand column , we detail. the pulse shape variations for differ-

ent directions of asymmetrical rupture growth relative to the observer. In

these synthetics , the takeoff angle is 30° from the fault normal and the rupture

velocity is v — .6 The asymmetrical models have about an 11% unilateral rup-

ture: i.f F~f  (~~) is the distance from the hypocenter to the perimeter of the

fault in the + direction , the percen t unilateral rupture is given as

— ~~~(+ + n)) (6
100 maxj 2 .

( ~f (+) — ~f (+ + ir)

Note how the asymmetrical models produce a strong variation of the peak sepa—

ration in the v2 pulse shapes over the focal sphere , as well as varying the rela—

tive amplitude of the peaks. This difference will also help resolve the trade—

L ~~~ . . 
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off between rupture velocity and rupture geomet ry.

In Figure 11, much of the more striking variations of the v2—plo ts appears

to result from differences in the crustal structure beneath the stations used.

The Sand Point V
2 pulse shape has been plotted with the same time scale, in

order to show the relative attenuation present in the short period WWNSS data.

In particular s it is necessary to point out the broadening (perhaps due to

attenuation) of the HKC pulse shapes, with respect to the pulse shapes at nearly

the same takeoff angles. Also the pulses at GDH and AAN appear to have a crustal

reverberation which is interfering destructively with the healing phase of the

pulse shape. This interference may be seen in the plots of the WWNSS analy-

sis in Figure 10 as well.

The slight differences (in relative amplitude and timing) of the depth

phase (updip) pulse shapes relative to the downdip pulse shapes suggests that

the rupture had a slight downdip component of unilateral rupture velocity (about

5Z) and a rupture velocity of about v — .6 Because of the narrow band of the

short period WWNSS instruments and the (unknown) crusta.l structure beneath the

stations whose P—waves were analyzed , we can only use these results qualitatively.

However , it is important to note that nearly all of the v2—plots fall within the

model range spanned by Figure 12, from which we have determined the variance of

aour source parameter estimates. As we have estimated the ratio for these

events, specifying an approximate rupture velocity and rupture geometry then

determines our final models.

Final Source Models

For the final source modelling we have used two circular versions of the

quasi—dynamic models. These models have the dynamically feasible “elliptical”

or self—similar slip distribution during rupture growth, and causal healing.

_ _
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Figure 13 shows half—view snapshots of the slip velocity for this circular model.

Since the displacement spectra from these events falloff faster than w 2 
, we

presume that the ruptures stopped gradually rather than abruptly , [iladariaga,

1978], and this gradual stopping is incorporated into the models.

Since both events were fit with circular models , the rupture velocities of

the two models are slightly different : v — for the 22 0153 event and

v — .55~ for the 0356 event; similar results would have been obtained if we

had fixed the rupture velocity using a slightly asymmetrical model for the 0356

event , and a rupture velocity of •6~ lovers the stress estimates by ‘~~ 20Z.

The source parameters obtained from our model fits are listed in Table 3. We

have calculated the moment and radiated seismic energy using the formulae ,

4 
5 4 _ _ _ _m — ~~~ ~ ~~~~ L~x) 3 ~x) ° u (7)

z~

p (& 8 8 f R  (z, ~ ) 7 2

Es — ( ~ BV
8) 

i~ (8)

where p(~~), p (z) 3.4, 2.5 gm/cm3 and 3 ( c ) ,  S (x) — 4.4, 2.5 km/sec are the

densities and shear wave velocities at the source and receiver , respectively ,

R(z,~~) — 52 1cm is the geometrical spreading factor calculated following New-

man [1973] and F~
’(0,+) — .46 is the radiation pattern factor. + (30°) .2 is

the fractional energy flux, which relates the time integrated energy flux at a

particular takeoff angle to the total radiated seismic energy [Boatwright , 1979].

The effective stress or the dynamic stress drop , [Brune , 1970], also may be

calculated directly from this modelling . Since the quasi—dynamic models incor—

porate the self—similar slip distribution described by Hoshov [19643, Burridge

and Willis [1969] and others , the slip 23 distribution is scaled by the initial

relative slip velocity , A (o). This slip velocity is related to the dynamic stress

, - ~~~~~~~~~ ~~
_ .  .

~ - ~~~~~~~~~~~~~~ “p ._~~~ - - — ~~~~~~~~~~~~~~~~~~ _~~_,~~~*~~~.-- _ _  p —
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by the approximate relation;

(9)

good for subsonic rupture velocities. Thus any model fit also determines effec-

tive stress by the formula;

1 5 1 1 R’~ ‘ ~~‘2 — ~~
., ,X~, U~ X , t

t f r2  
p( .ç )2 

~ (~ 
)2 ( ) 2  ~ (z) 2 

;
O - 

. 
- (10)

e 3 0 -o p8 (0 ,~ ) c2(x ,t)6

A(x ,t)
where . is obtained by scaling the data , ~i (x ,t) to the synthtics,

(~(x ,t) -

1~(s,t ) .  The model fits give ~~ — .38 and .34 for the 0153 and 0356 events ,
S~ (x ,

respectively.

The results compiled in Table 3 show two systematic anomalies . For both

events , the effective stress is greater than the average stress drop , while the

appa rent stress is substantially lower than t~lI e , which is the expected value

for frictional ruptures with v .6 g . However , the gradual sopping of these

events may explain both anomalies . If the rupture nucleated in a localized

region of high stress , the average stress drop over the rupture area might be

much lover than the initial stress drop , while radiated energy would be low due

to the gradual stopping. Considering the relative uncertainties of these cal-

culations, these results are in reasonable agreement.
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TABLE 1

Spectral Parameters

0153 0356

.13 ± .04 cm.sec .25 ± .07 cm~sec

2.2 ± .6 cm2/sec 3.1. ± .8 cm2/sec
V
3 1.2 ha .8 hz

5.1 hz 3.6 liz

.24 sec .37 sec

_ _ _  _ _ _ _ _  —.-.-- “— . .±  I
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TABLE 2
a

~~pture Duration—

Method 0153 0356
Corner Frequency .41 ± .1 secs .62 ± .2 secs
Characteristic Frequency .37 ± .1 secs •53 ± .15 secs
1~ise Time .39 ± .08 secs .60 ± .1 secs
Average .39 ± .05 secs .59 ± .1 secs

.-. . .-~~~~~~~~~~~~~~ --~~~~- --- ,--- - -- .-- - - -- --~~~~~~~~~~~~~~~~~~~~ -- -~~- - ---- -- 
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TABLE 3

Source Parameter

0153 Event

Radius — a — 1.2 las

Moment — m — 3.5 ± .8 x 10211 dyne. cm

Stress Drop — Ao — 890 bars Range — 600-1100 bars

Effective Stress — n — 1040 + 350 bars
C —

Radiated Energy — B — 8.7 ± 3.0 x 1020 dyne .cm

Apparent Stress — Ta 160 ± 60 bars

0356 Event

Radius — a — 1.65 las

M o m e n t — r n0 — 6.7 + l .5x1021’ dyne cm

Stress Drop — — 650 bars Range — 350—800 bars

Effective Stress — t — 780 + 250 barsC —

Radiated Energy — B
5 

— 12.4 ± 4.0 x 1020 dyne.cm

Apparent Stress — ta — 120 ± 50 bars

I
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MODEL VARIATI ON OF SHEAR WAVE V2 PULSE SHAPE S (
~ 3Q0)

CIRCU LAR MODELS 
- ASYMME TRICAL MODELS

(v .6~)

v .7~ rupture away from observer

v = .63 rupture norma l to observer

v .5~ rupture towards observer 
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BODY WAVE ANALYSIS OF ThE ST. ELIAS EARThQUAKE

In order to investigate the complexity of this earthquake ,

it is useful to consider both P and S body waves in the period

range from 2 secs to 50 secs. Using three WWSSN long—period seis—

mograms and the -1—75 Benioff seismograms recorded at Palisades,

we have established that the earthquake was made up of three

distinct sub—events , preceded by a small initial event. The

direction of rupture propagation appears to be to the southeast.

In teleseismic body waves from a shallow f ault , waveform corn—

plications occur through the interference of the depth phases

(i.e., the phases reflected from the free surface) and the di-

rect phase. To bake out this interference, we construct a free—

surface operator, FSO(t),~ for each body—wave arrival, using the

appropriate radiation patterns and reflection coefficients for
r1.4~L b . ’C-’4~~~’V h’~.-~.s o.v...~ ¶pCo i~ie.S ~~

• each phase to determine its relative amp1itude.~~Th operator is

then deconvolved from the actual pulse shapes in order to obtain

approximate whole space (AWS) pulse shapes, i.e., pulse shapes

-without the interference effects of the free surface. The delays

of the depth phases were adjusted by infn~tn1zing the deconvolutional

noise, thereby obtaining an average source depth. This approach

presimes that the pulse shapes of the depth phases are identical

to the pulse shapes of the direct phases. Since far—field pulse

shapes depend only on the vector slowness of the body wave along

the fault plane, for a horizontal fault plane the pulse shapes 

— -  — - ~~~~~~~ —.—~~~~~-——------- 
__i~~~ —~~~~~
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are identical. Thus this analysis is veil suited to earthquakes

occurring on very shallowly dipping fault planes.

-• - 
The steps of the analysis are shown in Figure 1, using the

P—wave arrival at station BXC (Hong Kong) as an example. The lower-

most trace is the bandpassed long—period seismogram; the trace

above it is the deconvolved (from the instrument response) ground

velocity. For this arrival, FSO(t) has a positive pulse for the

direct P, a very small positive pulse for the pP and a large nega-

tive pulse for the ~P. The convolutional inverse, labelled IFSO(t),

is shown next to it. The result of the deconvolution is the AWS

velocity, which is then integrated to obtain the AWS displacement,

shown at the top of the figure. The AWS pulse shapes clearly show

the three major sub—events , which are labelled 1, 2, and 3. The

initial event shows up as a small step in the seismogram which

becomes a single bump in the velocity0 tro.’t.

The AWS pulse shapes for the five body wave arrivals are com-

piled in Figure 2 along with their epicenter to station azimuths.

There is substantial variation with take—off direction and wave—

type. The pulse shapes at azimuths away from the direction of

rupture propagation, i.e •, the HKC P-wave and the KEV S—wave, show

the longest pulse rise times (i.e., the time from the onset of

event 1 to the peak of event 3), while the PAL S—wave has the

shortest. Note that because these pulse shapes depend on the slow-

ness of the body wave, the S—wave pulse shapes vary more strongly

than the P- wave pulse shapes . This accounts for some of the dif—

- •~~~~~~~~~~~~~~~•
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ference between the P-wave and the - S—wave at Palisades. The con-

structive interference of the rupture propagation , as seen in the

S—wave pulse shape, smooths the three sub-events into a single -

pulse. The marked separation of events 2 and 3 in the PAL P—wave

may be the result of a slight difference in the focal mechanism

of the two events, as this arrival is at a P—pP—sP node.

Using the pulse rise times, t½ , of the sub—events, we can

calculate their rupture lengths from the relation

V
— ~~ (1 — cos

where L is the rupture length, ~ is the angle between the direction
~~~~~~~~~~ 

~,of rupture propagation and the takeoff direction of the body wave

and v is the ruptur e velocity , assumed to be 2 5  km/sec . This

calculation gives £ — 9, 24-and 16 km for the three events. The -

PAL S—wave gives a total rupture length of 68 kin; however, as

the average rupture velocity for the whole event must necessarily

be smaller than the rupture velocities of the sub—events , this is

an overest imate.

The average rupture depth was determined using the PAL pulse

shapes , as the free—surface operators -for these arrivals were the

most sensitive to the delay times of the depth phases . A sS delay

of 6 seconds and a oP delay of 5 seconds gave the least deconvolu—
S.u.rC.~.tional noise, fixing the average rvp tuwe depth at 11 Ion .

44
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The deconvolutional analysis also aids the determination of

the body—wave moment , as it coalesces the amplitude information of

the direct phase and the depth phases into a single pulse. The

moments of the sub—events were calculated to be .8 , 3.5 and

7.6 x 1026 dyne—ca, respective ly , so that the total body-wave

moment is 1.2 x 1027 dyne—cl. The initial event has a moment

c 4 x 1025 dyne—cm. Because the pulse shapes for events 2 and 3

are not separated on most of the arriva ls , the division of the cumu— -

lative moment between, these events is somewhat ambiguous .

John Boatwright

- - Lamont—Doherty Geological Observatory

JB/ma
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FIGURE CAPTIONS - -

Figure 1. Steps of the deconvolutional analysis, as applied to

the RKC P-wave. The lowermost trace is the bandpassed

(1.2 secs to 66 secs) long—period seismogram . The

trace above it is the deconvolved ground velocity,

which has been corrected to extract the effect of the

high pass filter to a unipolar displacement pulse.

The FSO (t) and IYSO(t) operators are described in the

text . The AWS velocity is the result of deconvolving

PSO (t) from the groun d velocity . The time marks are

at 100 sec intervals . -

Figure 2 • -Approximate whole space displacement pulse shapes ,

obtained from the • body-wave arrivals at four stations .

• is the azimuth from the epicenter to the station,

as measured from north. The numbers identify the

sub—events discussed in the text • The dashed line

on the PAL P-wave is the presumed baseline , as the

- sample could not be adequately filtered to obtain a

flat baseline .

Figure 3. Radiation patterns for the phases of the P and SE

(optional) arrivals analyzed. The squares are the takeoff angles
fl ..,. ~~~

. o.r~
to the stations ; from left to right BKC , KEV, ESK ,

and PAL . The oP angles have been corrected for the

S—P reflection at the free surface. 
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ELEMENTARY SOLUTIONS TO LAMB’S PROBLEM FOR A POINT SOURCE AND THEIR RELEVANCE

TO THE STUDY OF SPONTANEOUS CRACK PROPAGATION ‘N THREE DIMENSION S

By Paul C. Richards2

ABSTRACT

Certain exact solutions to Lamb’s problem (the transient response

of an elastic half—space to a force applied at a point) involve the corn—

putation merely of three square roots , and about ten arithmetic operations

(+ , — , x , ÷) .  They arise when both source and receiver lie on the free

surface . It is just these solutions which are needed in a method due to

Hamano for obtaining the slip function (displacement discontinuity), as

a function of space and time , for planar tension cracks and shear cracks

which grow spontaneously with arbitrary shape. The solutions are described

here in detail , fo r an elastic medium with general Poisson ’s ratio. They

include perhaps the simplest—possible example of the P wave.

1 Lamont—Doherty Geological Observatory Contribution Number 0000.

2 Larnont—Doherty Geological Observatory and Department of Geological
Sciences of Columbia University , Palisades , New York 10964
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INTRODUCTION

A thorough understanding of motions in an elastic half—space , sub-

jected to an applied force, is an essential part of wave—propagation

theory needed to interpret seismic waves. For this reason, half—space

problems have been the subject of an enormous literature, beginning with

Lamb ’s (1904) classic study of displacements set up by forces applied at

a point and along a line on the free surface . Here , I give some new

solutions, these being the horizontal motions of the free surface for a

horizontal force applied as a step in time at a point also in the free

surface. (Throughout this paper, the half—space is oriented with a hori-

zontal free surface. Taking cartesian axes with x3 as the depth coordinate,

into the half—space, the free surface is x3 — 0.)

Whatever the value of Poisson’s ratio, the new solutions (which aug-

ment the work of Pekeris, 1955; Chao , 1960; ~nd Mooney, 1974) are ex-

tremely simple to compute. However, these formulas would be only a minor

curiosity if it were not for one very important application, in which

speed of computation is essential. This application is suggested by

Hamano ’s (1974) method for studying spontaneous crack propagation. Since

it is the larger problem of crack propagation which has motivated the

present study, I shall in what follows give a brief review of Hamano’s

method , befo re giving the simple solutions to Lamb ’s problem. 
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MOTIVATION

Within an infinite homogeneous elastic medium, initially at rest,

suppose that a crack nucleates at time t — 0 and subsequently grows

within the plane x3 = 0. Then a useful representation of displacement

ii = u(x ,t) throughout the medium can be given as

u~ (x ,t) — f  d r f f d ~ 1d~ 2 ~~~ (x ,t— t;~ 1,~ 2 ,0 ,O) T ~~~~~~~~~~~~~~~~ (1)

Here , Gnp (x ,t;~~,r) is the Green function for the medium, being the n—

component of displacement at (x ,t) due to a unit impulse applied in the

p—direction at position ~ and time r. For purposes of computing Gnp~

it is required that the whole plane x
3 — 0 be a traction—free surface.

T (~~ 1,~~ 2 , t) is the actual traction occurring on the whole plane x
3 = 0 of

which the crack is a part . Equation (1) is described further , and proved ,

by Das and Aki (l977a) and Aki and Richards (1979, their equation 2.43). In-

tuitively, the above representation can be understood as replacing the

actual (crack) source of radiation by a whole plane , separating the medium

into two half—spaces. Into each half—space, waves are radiated due to

the same tractions as those set up by the crack, applied over the half—

space surfaces. From the space—time element dtd~1d~2 
there is an applied

impulse of strength dr d~ 1d~2 T~ (~~ 1
,~~ 2

, t)  in the p—di rection . If the

displacement contribution to tin (x ,t) from this element is to be considered

in isolation from tractions acting elsewhere on x3 = 0, then the ap-

propriate Green function must be constrained by having zero traction

over the surface of the half—space. Hence, it must be a solution to Lamb’s

problem.

~

- -- -

~ 
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Hamano (1974) pointed out that for shear cracks and tension cracks ,

a soluble scheme for the displacement discontinuity Eu], say, across the

crack can be set up from equation (1) by considering the x position it-

self in the crack plane, x — (x1 ,x2,O), and using sy~~~try properties of

u and T across x3 = 0 to constrain the displacement and traction on dif-

ferent parts of the plane of the crack.

For a general tension crack , [u] = (0 ,O,u3] and T = (0,0,T3) so that

the only Green function needed is G33.

For a general shear crack , Eu] = [u 1,u2,01 and T = (T1,T2,0) so that

the only Green functions needed are G11, G12, G21 and G22 (see Das and Aki,

l977a , for a related study of two—dimensional cracks). The jump in u3 is zero,

because opposite faces of the crack remain in contact. T3 is zero, because

planar shearing cannot change the normal stress on the crack plane. Together

with G33 for tension cracks, these five different Lamb problems/Green functions

need be studied only for the case that both source and receiver lie in

the free surface of the half—space. Hamano ’s method is important in

offering the chance to study spontaneous crack growth for completely gen-

eral si—apes of planar cracking. This paper contributes to that goal, by

showing that just these Green functions are almost trivially simple to

compute. For completeness , a single integral is also given below , in terms

of which the remaining four components , G13, C23, C31, C32, can eff iciently

be computed.

FORMAL STATEMENT OF PROBLEM, AND ITS SOLUTION

In this section, explicit formulas are derived for G~~
11 (x 1,x2,0,t;~~1,~ 2,O,O) ,

this being the n— component of displacement at position (x 1, x2, 0) and time t , 

-~~~~--—- -~~~~~~~~~~~~~~~~~~~~~ —~~~~~--- ~~~~~-.---~~~~~~~~ ~ -- - 
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within the free surface (x 3 — 0) of a homogeneous, isotropic elastic half—

space, due to a unit—step force in the p—direction applied also within

the free surface, at position (
~ 1,~ 2,

O), the step occurring at time 0.

Once this solution has been found , G~~ for an impulse (as required in the

section above) is given by

(x , t — r ;~~,O) = f- G~,
H (x,s;~~,O)

s = t — -r

Since related problems have had such a wide exposure, I shall abbre-

viate the description of how a solution is obtained. Thus, in general,

the solution to Lamb’s problem for a point source can be obtained as an

integral over just one variable . In our case ,

1 T ~~P d P
cH (x 1, x2 , 0 ,t ;0 ,O) = 

~
2pr Imczg- { f  H (T— l)~ (1)

1 (T2—P2) 2 [(A—2P2)2+4xYP2]

where ~.i = rigidity , r = (X 1
2+~22)

½, H is the unit Heaviside step function ,

and capital letters in the integrand denote dimensionles~ quantities :

A = cz2/ B 2(cz = P—wave speed , 8 S—wave speed)

T — at/r (T — 1 being the P—wave arrival time)

X — (l_P2)½ or —i (p2_l)½ , Y (A_P 2) ½ or —i (p 2_A) ½,

Imag U denotes the imaginary par t of {} , and

L11 — {(T 2—P2)(2Y—4x+(A—2P2)/Y] + AY} cos2$

— ~
2[2y 4x+(A..2p2)/y] — AY} sln2$

L. . i:i 1111114112111 
S



L22 {(T2—P2)[2Y—4X+(A—2P2)/Y] + AY) sin2$

{T2[2Y—4x+(A—2P2)/Y] — ÀY) cos24

and

L13/cos~ L23/sin~ — L31/cos+ — —L32/sin~ T(A—2P2) — 2TXY , where $

is given by x1 — rcos~p, x2 — rsin$, so that $ is the azimuth to x.

Formula (1) can be written down from Johnson (1974, his equations 26—

34, but using P2 for his c~
2t2r 2 — ct2p2). Our variable P is a (dimension-

less) horizontal slowness, and (1) is essentially a Cagniard solution in

the form advocated by Hei.mberger (1968). Both source and receiver lie in

the free surface, so the Cagniard path lies just above the real P—axis in

the complex P—plane (see Figure 1, and caption).

In fact, the P—integrals for G11
11, G12

H, G21
H, G22

H and c33
R can be

given in closed form. This is not possible for the four remaining entries

in GH, but these four are all proportional to just one integral which is

still fairly simple to compute. We note first that

G11
H (xj,x2,O,t;O,O) (11(T) cos2~ — 12(T) sin2$]/(ir~ir)

[11+12] cost sin+/(it~r)

(Ii sin2~ — i~ cos
2+1/(iriir)

HG33 — I3(T)/(w~ir)

where arguments have been written out explicitly only for the first of

equations (3). Just three functions of dimensionless time are needed to

evaluate these five components of namely
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— mug ~ :~ 
H(T—l)~ (T 2-P2)[2Y-4X+(A-2P2)/Y 1 + A! PdP )

11 

~ (T2—P 2) 2 (A— 2P2)2-i-4xYp2

T H(T—fl (T2 [2Y_4X+ A_2P 2)/YJ — AY
12(T) — ~ 1) 7rag 

1 
(T2_P2)½ \\ (A—2P 2) 2+4xYP2 PdP } (4)

and

— Imag { f  H(T l) AX 
PdP I¶ 

1 (T2_P2) ½ (A—2P 2) 2+4x7P2

It follows from (3) that Ij and 13 are displacements within the vertical

plane containing source and receiver, like the dominant motion in P—SV, whereas 12

is a displacement transverse to this plane, like the dominant motion in SH.

give analytic expressions below for each of these three integrals. A fourth

dimensionless solution to Lamb’s problem is introduced via

H
C13 (xj , x2 , O ,t ;O ,O) — Ik(T) cos$/(iqir) ,

(5)

— I, sin$/(irpr), G31
H 

= — I, cos$/(w~r), and G32~ — — I~ gin~ /(iqjr).

The integral for this solution is

I~(T) 
! Inug~ 

{ f  H(T~~ T~~~2~~ - 2~~~ PdP } (6)
1 (T~Lp2) ½ 

~ 
(A—2P 2) 2 + 4XYP2’

which cannot be given in closed form.
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For a vertical point force, Pekeris (1955) obtained a closed—form solu-

tion for the vertical displacement (our 13) and a sum of elliptic integrals

for the horizontal displacement (our Ik). His solutions were restricted

to the case ~~~~ — 3 (Poisson’s ratio — 0.25), and Mooney (1974) indicated how

the evaluation of 13 might be carried out for any value of a2/82 (though Mooney

did not publish the solution formulas). For a horizontal point force, in a

medium with ct2/~
2 — 3, Chao (1960) obtained closed—form solutions for the hori-

zontal displacements (our Ij and 12) and a sum of elliptic integrals for the

vertical displacement. Solutions themselves have not previously been given

explicitly, for general cx2/B2, for any one of the four basic (dimensionless)

solutions I~ .

In every case, the basic approach involves writing

1 (A—2P 2)2—4X!P2 (A— 2P2)2—4XYP2 (7)
(A— 2P2) 2+4X1P2 (A—2P2)4 _16X2Y2Pk Cubic(P2)

so that the new denominator , of sixth order in P , is real throughout the

P—axis integration and has no branch cuts. The imaginary parts of the new

integrals are easy to identif y (together with a semi—residue contribution to

‘k from indenting around the Rayleigh pole: see Figure 1 caption) . If roots

~~~ R2, R 3 are found for the cubic in P2 , integration for Ii,  12, 13 becomes

possible using the partial—fraction decomposition

1 
— 

a + b + C (8)
(A—2P 2) ’ —16X2Y2P2 P2—R j P2 .R2 P2—R3



_ _ _ _  _ _ _  -
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1-
The Rayleigh pole lies at P R3

2 c*/y (always on the real P—axis ,

just to the right of P = c~/8, since Rayleigh wave speed y is a few percent

less than B) . If Poisson ’s ratio is less than a critical value , approx-

imately 0.263 , then R1 and R2 are real and lie between 0 and 1. But, for

greater values of Poisson’s ratio, a1 and a2 are Complex conjugates , as

are a and b in (8), though c Is always real. In this case there are poles in

the complex P—plane which can be associated with the io—called P wave (Gilbert

et al . ,  1962; Chapman, 1972; Aki and Richards, 1979), appearing between P—
and S—arrivals. R1 

2 and K2 
2 lie on a Rieinann sheet different from that which

contains the Cagniard path.

Substitution of (8) into (7) and (4) leads to 24 integrable terms for

each of I~ and 12, and 6 such terms for 13. Extensive cancellation does

eventually occur . The solutions , involving real positive constants

(j 1, ... , 7) and complex constants Ck (k — 1, 2, 3), are as

follows:

For times prior to and including the P—arrival, T < 1,

11 12 13 0. (9)

For times between P— and S—arrivals, 1 < T < cu B, there are two

different kinds of elastic media to consider. If Poisson’s ratio is

less than 0.263 (corresponding to A — a2/B2 < 3.11),

I
~ 

T2[c1 (T2_R1)~~
_ c2(T2_R2)~~ — c3(a3_T2)~~ ]

12 — —c ,, + c 1 (T2_R 1) ½ 
— C2 (T2_R2)½ + c 3 (R3_T2)’~ (10)

13 Ci — C5 (T2_R 1)~~ + c6 (T2_R2)~~ — C7 (R3_T2) ¼

- 
_  

_
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If Poisson ’s ratio is greater than 0.263 , it is necessary first to define

the complex square root (complex, because R2 is then complex) ,

cRooT — ((1_R 2) (T2_a2)] ½ 
(11)

in which the choice of sign is made such that the complex number

1 + 2 (1—p..2—cRoo T) / (T 2—l) has magnitude less than unity . Then ,

Ii — —T~ (Real {C1/CROOT) + c3 (R3_T2)~~]

12 — CL 1 — Reat JC2 X CROOT} + c3 (a 3_r 2) ½ (12)

13 — c, + Rea~ {C3/C R 0 OT}—c 7 (R3_T 2)~~

For times between the S—arrival and the Rayleigh wave arrival,

cu/B < T c

Ii — 0.5 — 2c3 T2(R3_T2)~~

12 — —2ck + 2C3 (R3_T2)½ (13)

13 — 2c, — 2c7 (R3_T2)~~

For times after the Rayleigh arrival, aly c

_______________ __  . 



r~~ 1
11.

I

— 0.5

12 — —2c~ (14)

13

Constants in the above solution need be evaluated just once for a

given elastic medium, specified by the ratio ct2/B2. An effective approach

is first to find the largest root R3 of the Rayleigh cubic; then to factorise

p2_b from the cubic and solve a quadratic for Ri and R2. Constants a, b, c

in (8) are given by

a~~ 16(A-].)(R1—R2)(R3—R1)

b~~ — 16(A—l)(R 1—R2)(R2— K3) (15)

— 16(A—1)(R3—R1)(R2—a3)

Then

c1 — _2aA(A_R1)(1_R1)½ c2 — 2bA(A_R2)(1_R2)½

C3 — _2cA(R 3_A) (R3_ 1) ½ c4 — A/ (8A—8)

c5 u._2SAR1(1_R l) (A_ Ll)½ 
C6 — 2bAR2(1_R2)(A_R2)½ 

. .-I
~ - .- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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12

C7 — _2cAR3(a3_l)(R3_A)
½ 

C1 = 4bA(A—R2)(l—a2)

C2 — 4bA(A—R2) C3 = bA(A—2R2)2(l—R2).

Solutions given above for I~, 12, 13 
require at most the evaluation either

of three real square roots, or (depending on Poisson’s ratio) the eval-

uation of one complex square root and one real square root. These (worst)

cases occur only between F— and S—arrivals. In terms of these closed—form

solutions, all the five components of relevant to Hamano’s method for

studying spontaneous shear and tension cracks can be rapidly computed via (3) .

Although I~, can be given in terms of elliptic integrals (with complex

arguments when Poisson’s ratio is greater than 0.263), it is probably more

efficient directly to integrate as follows:

0 forT< l;

~~ ~/2 (pz...l)(A_p z)½(A...2p2) dx for 1 c T < cu/B,
~ 0 (A—2P 2)~ —16X2Y2P’

I~,(T) “~~. where P2 — (T2—l) sin2X + 1;

~~~ ir/ 2 
(P2..1) (A.~P2)( A...2p2)dy H(T~ i/y) c

8
T for c u / B < T ,

~ 0 (T2_P 2) ½( (A_2P 2) L~_16X2!2P~] (T2_R
3
)½

where P2 — (A—l)sin 2 Y + 1. (16)

Integrals with respect to X and ‘V here have well—behaved integrands . Note

that, at time T — cu/? R3~, a singular Rayleigh wave arrives (see Figure lb



caption) with strength proportional to the positive real constant

C — ½cA(A—2R3)3/R3. (17)

In Figure 2 are shown the time—dependences of I~
, 12, 13 for four

different valuesof cu2/B2. We note the following basic properties: (i)

Displacements Ii and 13 are continuous across the P—arrival, as are 12 and

the particle velocity d12/dT. These results follow from (10), (12), and rela-

tions between constants appearing in these formulas. (ii) I~ and

13 are continuous across the S—arrival, but have discontinuous slopes,

whereas 12 itself is discontinuous. (iii) 12 is continuous across the

Rayleigh—wave arrival time, but Ij and 13 are singular. All three solu-

tions are exactly constant after the Rayleigh singularity: these constants

must then be the static solutions. (iv) For the horizontal displacement due

to a horizontal force, the step (in 12) at the S—arrival can be seen from

(3) as having the orientation of an SR—wave, whereas the singularity

(in Ii) at the Rayleigh—arrival occurs as P—SV motion. However, because

P—wave motion is not in general exactly longitudinal, the transverse motion

(given by I~) does begin at the P—wave arrival. (v) A 
P wave is apparent

in 13 at times between and P— and S—arrivals, becoming more apparent with

increasing values of cu2/B2. Since it arises from a single algebraic

expression, the term Real~ 1C 3/CROOrI in (12), detailed properties of this

wave are easy to investigate.

In Figure 3 is shown the time—dependence of Ii. for four different

values of cs2/B2. Romberg integration was used, requiring occasionally up

to 128 intervals for 1% accuracy. There is a discontinuous slope at the P— and

S—arrivals; a jump to a singularity at the Rayleigh arrival; and thereafter

a gradual decay to the static limit. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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CONCLUSIONS

Perhaps the main achievement of this paper is the exact form of constants

c c (positive real, if used ) and complex constants C , C
2
, C , in terms

of which the complete solution to Lamb ’s problem can be given for any orient-

ation of applied force, any displacement component and any value of Poisson’s

ratio, provided both source and receiver lie in the free surface.

Four scalar solutions in G, involving the cross—terms (vertical or hori-

zontal displacements due respectively to horizontal or vertical applied force),

cannot be given in closed form, but a well—behaved integral solution is

possible in general.

In the case of horizontal displacements due to a horizontally applied

force, the solutions are relevant to a method for studying spontaneous shear

cracks. For the case of vertical displacement due to a vertical force, the

solution has relevance to tension cracks. In both these cases, solutions

(3), (9)—(l4), for a step—applied force, are so simple that the following

can readily be derived in closed form: (a) solutions for an impulsively—

applied force; (b) solutions averaged over (r, r+t~r), ($,++A$) and (t,t+~t);

(c) 14 of the displacement fields 3G~p/~~q — G~p,q due to a single—couple.

Specifically, we can use reciprocity on Gnp so that the derivative is con-

ducted with respect to receiver coordinates. From the five closed—form

solutions in G, 10 single—couple displacement fields can be obtained by

differentiating in the 1— and 2—directions, parallel to the free surface.

The solutions for (n,p,q) — (1,3,3), (2 ,3,3), (3,1,3) and (3,2,3) can also

be recovered in closed form, by using the linear strain constraints at a

stress—free surface. .

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~ . . . . .
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The simplicity of the five scalar solutions in G, which are associated

with Hamano’s method for studying cracks, is so remarkable that it gives

high hopes of successful development of a 3—dimensional study of spontaneous

shear and tension fractures.

U

— 
1T~~~i 

~~~~~~~~~~~
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FIGURE CAPTIONS

Figure 1: The Cagniard integration path for (1), (4) and (6) is shown as a

solid heavy line. Singularities of these integrands are shown

in (a). They consist of branch cuts trending to the right along

the real P—axis from points 1 and cu/B, and a pole at cz/y (y being

the Rayleigh wave speed). As well as the pole at cut’,’ R3
½, we

also show schematically the poles at ~ ½, R2½ in the right half—
plane. R1, K2 and K3 are roots of the Rayleigh cubic in P2,

(A_2P2)~_l6X2Y2Pk l6(1—A)(P2—R1)(P2—R2)(P2—R3). For A < 3.11,

R1 and K2 are real and lie between 0 and 1. But for A > 3.11,

R1 and R2 are complex conjugates. Accurate locations for different

A are given in Figure 3b.

In (b) is shown a path of integration in the vicinity of the

Rayleigh pole. In the limit , as the semi—circle radius shrinks

to zero, integration reduces to a principal value integration

plus — iir x residue at the Rayleigh pole. The residue is imaginary

from the integrands (4) of I~, 12, 13, and hence gives zero net

effect when the imaginary part is evaluated after multiplication

by — ut .  But the residue from integrand (6) for I,~ is real ,

leading to a non—zero contribution from the Rayleigh pole when

T > cu/’,’.

Fi&ure 2: Here are shown the fundamental time—dependences of displacement

for (a) I~ , the longitud inal horizontal displacement for a

horizontally—applied force; (b) 12, the transverse horizontal 

-.-~~~~~~~~



19

displacement for a horizontally—applied force; and (c) 13. the

vertical displacement for a vertically—applied force. We have

chosen to plot values of 13 positive downwards, so that upward

values in (c) correspond to — 13, and hence to the convention

cosmon in seismology of recording vertical motions as positive

upwards.

In each case, the time—dependence is worked out for four

different values of cu2/82. Time for these four cases is scaled

so that P—arrivals (at T 1) and S—arrivals (at T — cu/B) are

aligned . Values are plotted, as heavy solid lines, only between

amplitudes ±1. I~ and 13 in fact are singular at the Rayleigh

arrival (marked R),  thereafter jumping inmiediately to the static

value.

Dotted lines give values of ‘i’ 12, 13 scaled up by a factor

of 15, and hence display the detailed time—dependence at low

amplitudes.

Figure 3: (a) Values of the fundamental solution I~ as a function of

time. A closed—form solution is not possible in this case.

Computation is for four differ ent ratios of ct2/$2. Dotted lines

show values of 15 x

(b) Since T can be regarded as a value of P, the dimensionless

horizontal slowness , we have here shown the complex P—plane

with the same scale as the T axis in (a), and Figure 2a,b ,c.

Values of 15 x ~~ are repeated from (a). Singularities R1
¼,

R2
½, R3

½ here, for different values of cs2/B2, occur then at times

(P—values) which are indicative of what turn out to be properties

L _ _ _  

_~~~~~~~~
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of the P and Rayleigh waves . Thus, R 2
½ for a2 — 2¼82 is almost

coincident with the ordinary P—wave arr ival , making the latter

highly impulsive for Ii and 13 because of the term in

(T2_R2)~~ . At larger cu2/ 8 2 , the occurrence of complex R2½

with real values greater than one leads to the emergent broad

pulse between P— and S—arrivals in 13 and ‘k• I~ is interesting

that such a F wave is not apparen t for I~ and 12. 
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